Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Student's t distribution.
se_st(v)
re_st(v, delta)
hce_st(v, delta)
ae_st(v, delta)
The functions se_st, re_st, hce_st, and ae_st provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Student's t distribution and \(\delta\).
The strictly positive parameter of the Student's t distribution (\(v > 0\)), also called a degree of freedom.
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
The following is the probability density function of the Student t distribution: $$ f(x)=\frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi}\Gamma(\frac{v}{2})}\left(1+\frac{x^{2}}{v}\right)^{-(v+1)/2}, $$ where \(x\in\left(-\infty,+\infty\right)\) and \(v > 0\), and \(\Gamma(a)\) is the standard gamma function.
Yang, Z., Fang, K. T., & Kotz, S. (2007). On the Student's t-distribution and the t-statistic. Journal of Multivariate Analysis, 98(6), 1293-1304.
Ahsanullah, M., Kibria, B. G., & Shakil, M. (2014). Normal and Student's t distributions and their applications (Vol. 4). Paris, France: Atlantis Press.
Arimoto, S. (1971). Information-theoretical considerations on estimation problems. Inf. Control, 19, 181–194.
re_exp, re_gamma
se_st(4)
delta <- c(1.5, 2, 3)
re_st(4, delta)
hce_st(4, delta)
ae_st(4, delta)
Run the code above in your browser using DataLab